- xiao9di 的博客
零散知识汇总
- 2022-7-3 13:13:46 @
圆周率 pi
#include<cmath>
M_PI; //圆周率pi
Dev-C++5.11设置编译选项:
菜单:工具->编译选项
在编译时加入-std=c++14
;
在连接时加入-static-libgcc
;
文件IO
freopen("题目英文名.in", "r", stdin);
freopen("题目英文名.out", "w", stdout);
程序的优化魔法(正式比赛时慎用)
#pragma GCC optimize("Ofast", "inline", "-ffast-math")
#pragma GCC target("avx,sse2,sse3,sse4,mmx")
notepad++加运行C++功能:
F5 -> 如下命令
cmd /k cd /d "$(CURRENT_DIRECTORY)" & g++ "$(FILE_NAME)" -o "$(NAME_PART)" & "$(NAME_PART).exe"
保存 -> "C/C++ compiler", 设置习惯的快捷键
关闭同步的cin,加快cin的速度
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0); //endl -> '\n'
设置小数点位数:
//方法一:
#include<iomanip>
cout << fixed << setprecision(2) << n << endl;
//方法二:
#include<cstdio>
printf("%.2lf\n", n);
int类型 的最大值和最小值
INT_MAX
等于2147483647
INT_MIN
等于-2147483648
快读
inline int read()
{
int s = 0, f = 1;
char c = ' ';
for(; !(c >= '0' && c <= '9'); c = getchar())
if(c == '-') f = -1;
for(; c >= '0' && c <= '9'; c = getchar())
s = (s << 1) + (s << 3) + (c ^ 48);
return (f == -1) ? -s : s;
}
2^n
\le
\ge
\geqslant
\leqslant
\sim
\times
\cdot
\div
\pm
\mp
\neq
\approx
\equiv
\in
\Phi
O(N^{\frac{1}{2}})
\sqrt{log n ∙ log log n}
n = \sum_{i=0}^{k}
n= \overline{abc}